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Automatic speaker verification (ASV) and identification
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Figure 1 - Overview of Automatic Speaker Recognition Systems Figure 2 - Phases in Automatic Speaker Recognition Systems



Speaker modeling approaches

» Gaussian mixture models (GMM) [1]

» GMM-Universal background models (GMM-UBM) [1]
» GMM-supervector+SVM [1]

» Joint factor analysis [2]

> i-vectors (state of the art)[2]

» Deep neural networks [3]

1. Tomi Kinnunen and Haizhou Li, " An overview of text-independent speaker recognition: from features to
supervectors”, Speech communication, 2010.

2. N. Dehak, P.J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet. " Front-End Factor Analysis for Speaker
Verification”, IEEE TASLP, 2011.

3. F. Richardson, D. Reynolds, and N. Dehak. "Deep neural network approaches to speaker and language
recognition”, IEEE Signal Processing Letters, October 2015.



Spoofing voice biometric (ASV) system

* Spoofing vs Anti-spoofing ?
+ Spoofing attacks:

»  Impersonation

v Replay

v Text-to-Speech

 Voice conversion
Difficulty level: Spoofer perspective | | Difficulty level: research perspective Where do we stand ?

Our main focus

1. Replay 1. Text-to-Speech
2. Text-to-Speech 2. Voice conversion 1. Replay
3. Voice conversion 3. Replay 2. Impersonation
4. Impersonation 4. Impersonation

- ASV systems vulnerable to spoofing attacks [1]
- Commercial applications : Adobe TTS, Lyrebird [2,3]

1.Z.Wu, N. Evans, T. Kinnunen, J. Yamagishi, F. Alegre, and H. Li. “Spoofing and countermeasures for speaker verification: a survey”, Speech Communications, 2015.
2. https:/ilyrebird.ail
3. hps: dob

h.htm




ASV Spoofing challenge Overview

ASVSpoof 2015 challenge: 1* edition [1,3]

Special session at Interspeech 2015.
Focus on TTS and VC spoofing .

16 research teams.
Text-independent.

Released ASVspoof 2015 corpus.

» TTS, VC and Replay spoofing.
- 5 research teams.

»  Text-independent.

» Released avspoof corpus.

Growing interest in the community

ASVSpoof 2017 challenge: 2™ edition [1,4]

Special session at Interspeech 2017.
Focus on Replay spoofing .

48 research teams.

Text-dependent.

Released ASVspoof 2017 corpus.

1. http://www.asvspoof.org/

2. https://ieee-biometrics.org/btas2016/

3. Zhizheng Wu et. al, "ASVspoof 2015: the First Automatic Speaker Verification Spoofing and Ct Challenge",

4. Tomi Kinnunen et. al, “The ASVspoof 2017 Challenge: Assessing the Limits of Audio Replay Attack Detection in the Wild", Interspeech 2017 (!o appear).




ASVSpoof 2017 spoofing challenge
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Our anti-spoofing system
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Fig3: Single feature-based anti-spoofing system

Fig4: Score fusion based anti-spoofing system




Performance

Table 1: Performance, based on equal error rate (EER %), on ASVspoof
2017 development and evaluation data.

System Development set | Evaluation set

baseline 11.4 30.6

Primary 19 +0.73 34.78
Contrastivel 2.12 £0.76 37.65
Contrastive2 3.25 +0.84 36.33




ASVSpoof 2017 Challenge results

Table 2: Top 5 systems of ASVSpoof 2017 replay spoofing challenge [1]

System Name | EER Description
Baseline 30.6 Based on CQCC 90d
S01 6.73 | CNN+GMM, iVector+SVM,CNN-RNN; score fusion.
S02 12.39 PLP, MFCC and CQCC system fusion.
S03 14.31 8 features; GMM and FFNN; fusion.
S04 14.93 6 features; GMM; fusion.
S05 16.35 FBank features; GMM and CTDNN; fusion.

1. Tomi Kinnunen et. al, " The ASVspoof 2017 Challenge: Assessing the Limits of Audio Replay Attack
Detection in the Wild", Interspeech 2017 (to appear).



Post-evalution experiments

Table 3: Fused systems obtained after post evaluation. F1-F4 are
statictdelta+acceleration (SDA) 60d-based score fusion systems. S1-S7
corresponds to MFCC, IMFCC, LFCC, RFCC,LPCC, SCMC and APGDF
based systems.

System Fusion Dev set Eval set
F1 S1-S7+B (KNN) | 2.76 + 1.02 33.64
F2 S1-S74+B (AVG) 7.56 31.39
F3 S1-S6+B (AVG) 7.74 30.4
F4 S1-S5+4B (AVG) 8.03 29.17
F5 S1(S) 4.33 34.3
F6 S1 (SDA) 5.44 30.8




MFCC Vs IMFCC performance

Table 4: Comparing performance of 20 dimensional static MFCC and

IMFCC GMM systems trained using 10EM iterations.

Model order Train Dev Eval
MFCC | IMFCC | MFCC | IMFCC | MFCC | IMFCC
512 0.06 0.04
64 0.19 0.19
32 0.24 0.51




Performance on feature dimension
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(a) MFCC-based GMM model order = 64.
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Multivariate analysis: Correlation

Correlation Matrix, MFCC eval set

Correlation Matrix. MFCC dev set

Correlation Matrix, MFCC train set
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Multivariate analysis: PCA

Scatter plot of PC1 and PC2 on MFCC train

Scatter plot of PC1 and PC2 on MFCC dev data
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Scatter plot of PCL and PC2 on MFCC eval data.
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Main progress

1. Database for ASV and spoofing research.

N

ok w

Research collaboration: Sheffield University & University of
Eastern Finland.

Literature review: ASV spoofing.
Actively been supervised: 18 supervision logs.
Submitted paper in Interspeech-2017.

Multi-variate analysis work (going on).



End goals

1. Build speaker models to combat mimicry and replay spoofing
attacks.

2. Alternative applications of speaker models: spoken language
learning, entertainment.

3. Investigating neural network approaches to anti-spoofing.
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