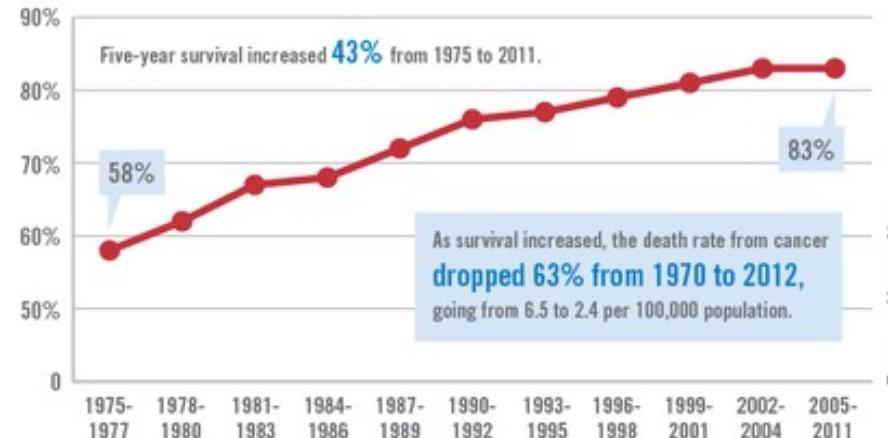


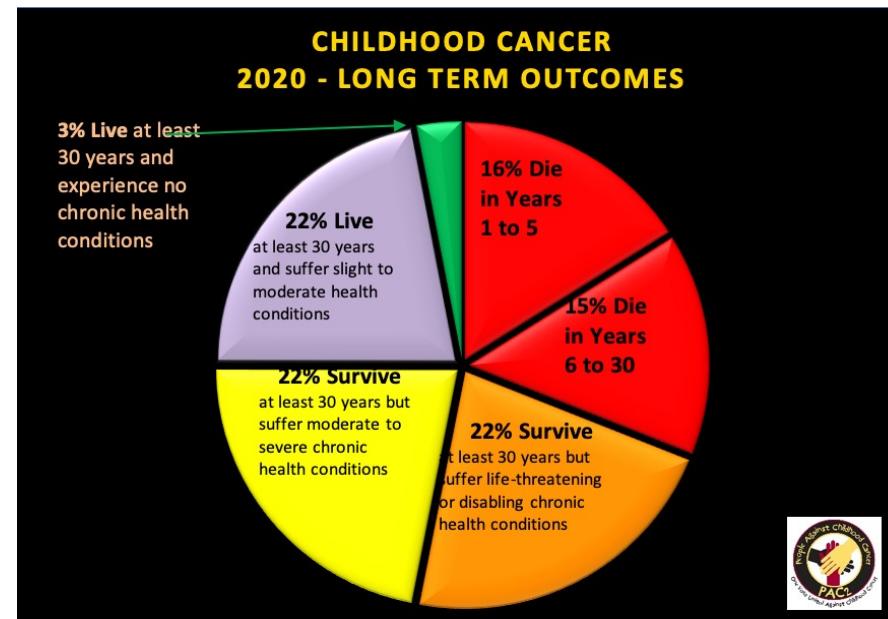
Transfusion Related Iron Overload: Improving the evaluation and management in pediatric cancer survivors.

LUKE GINGELL, MS3, ALLISON CLOSE, MD; TROY QUIGG, DO, MS; CHI BRAUNREITER, MD


Objectives:

- ▶ To review and discuss the evidence of transfusion-related iron overload (TRIO) in pediatric hematology and oncology (PHO) patients.
- ▶ To highlight the lack of consistent practice in screening and treating TRIO in PHO patients.
- ▶ To educate on advances in TRIO quantification
- ▶ To identify risk factors that predispose patients to TRIO.
- ▶ To create a new clinical guideline that promotes early TRIO identification and appropriate evidence-based interventions.
- ▶ Assess adherence to guideline and identify changes in patient outcomes before and after algorithm implementation

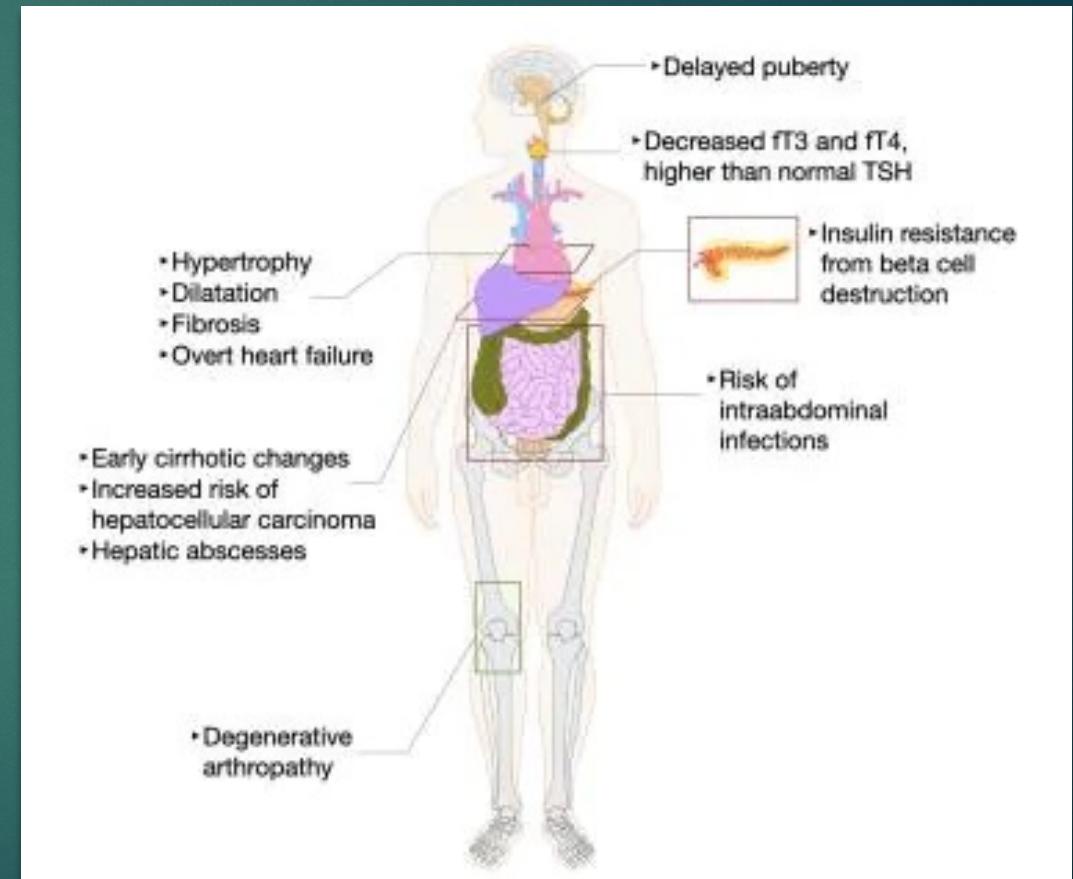
Background and Significance


- ▶ >80% 5 year-survival rate when diagnosed with cancer < 20 years old (Hayat, M.J., et al., 2007).
- ▶ 62% – 95.5% of childhood cancer survivors will develop at least 1 chronic health condition (Hudson, M.M., et al. 2013, Nathan, P.C., et al., 2008) .

Five-year cancer survival for children by year of diagnosis

Note: Based on data for children from birth to age 14 years from the Surveillance, Epidemiology, and End Results Program.

Source: CA Cancer J Clin. 2016 Jan;66(1):7-30


Background and Significance

- ▶ TRIO is a potential cause of morbidity and mortality in CSS who receive multiple pRBC transfusions (Trovillion et al., 2018, Schempp 2016).
- ▶ Iron is known to accumulate in the heart, liver, pancreas and spleen resulting in oxidative stress -> tissue damage
- ▶ Growth alone does not normalize moderate-to-severe iron overload in pediatric patients (Majhail, N.S., et al., 2008).
- ▶ Current chemotherapy regimens have increased transfusion reliance and potential for iron overload (Ruccione, K.S., et al., 2012)

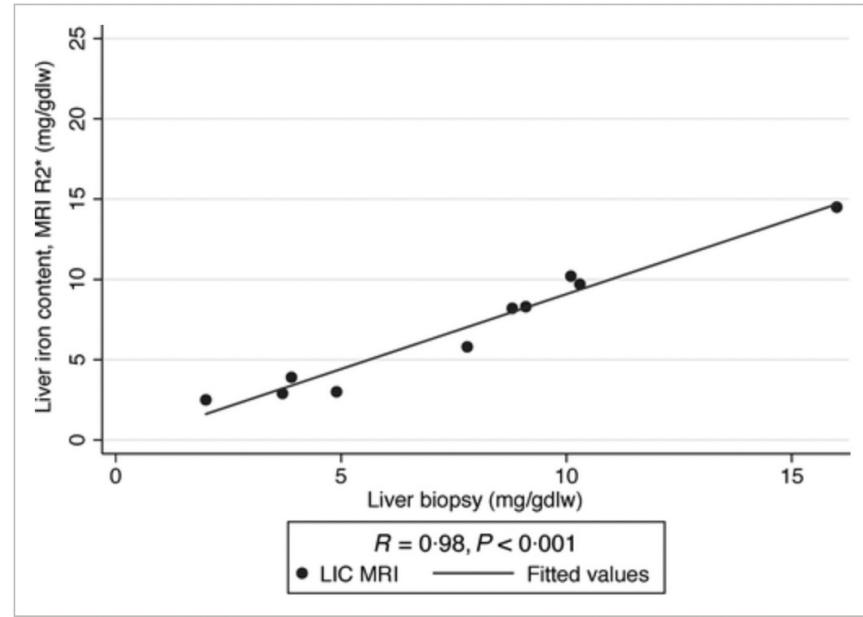
- i. Non-HSCT patients:

- ▶ 3% (Trovillion et al., 2018)
- ▶ 14% (Halonen et al., 2003)
- ▶ 24% (Nair, et al., 2018)
- ▶ 38% (Olcay et al., 2014)

- ii. HSCT patients: 40% (Chotsampancharoen, T., et al., 2009)

Background and Significance

- ▶ Currently, COG only recommends serum ferritin for HSCT patients.
- ▶ No recommendations exist for non-HSCT TRIO screening or treatment.
- ▶ Innovations in imaging and pharmacology provide new tools for TRIO assessment and management.

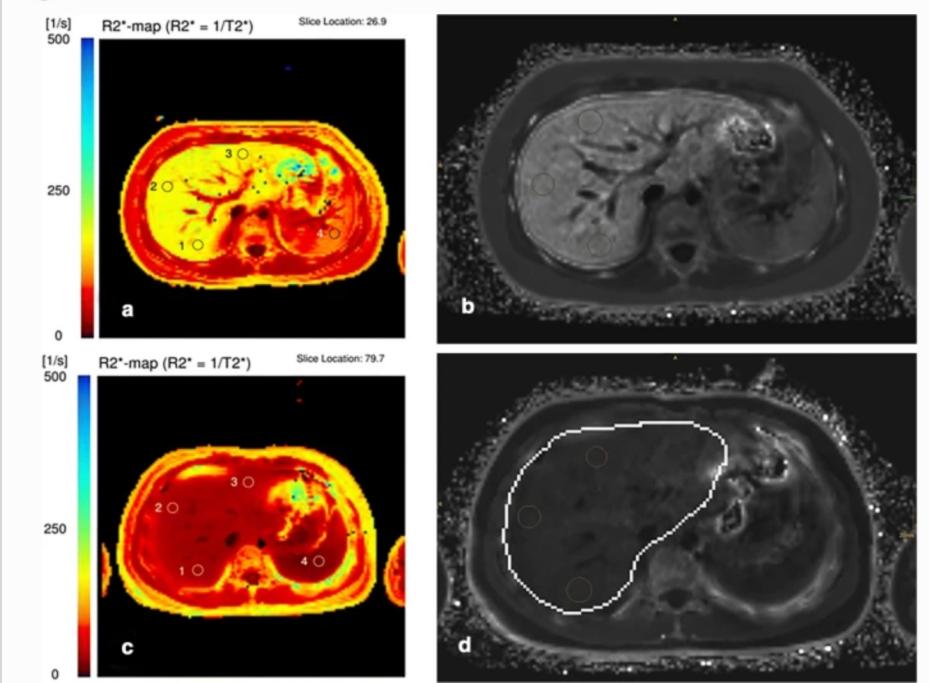

HEMATOPOIETIC CELL TRANSPLANT (CONT)

Sec #	Therapeutic Exposure	Potential Late Effects	Periodic Evaluation	Health Counseling/ Further Considerations
101	Hematopoietic Cell Transplant (HCT)	Hepatic toxicity Chronic hepatitis Cirrhosis Iron overload Cholelithiasis Focal nodular hyperplasia	PHYSICAL Scleral icterus Jaundice Ascites Hepatomegaly Splenomegaly Yearly SCREENING ALT AST Bilirubin Ferritin Baseline at entry into long-term follow-up, repeat as clinically indicated	HEALTH LINKS Liver Health Gastrointestinal Health POTENTIAL CONSIDERATIONS FOR FURTHER TESTING AND INTERVENTION Platelet count for evaluation of hypersplenism and prothrombin time for evaluation of hepatic synthetic function in patients with abnormal liver screening tests. Screen for viral hepatitis in patients with persistently abnormal liver function or any patient transfused prior to 1993. PCR testing for hepatitis C virus (HCV) in immunosuppressed patients who are negative for antibody. Gastroenterology/hepatology consultation in patients with persistent liver dysfunction or known hepatitis. Hepatitis A and B immunization in at-risk patients lacking immunity. T2* MRI for evaluation of liver iron content. Liver biopsy in patients with evidence of excessive liver iron content (based on clinical context and magnitude of elevation). Phlebotomy or chelation therapy for treatment of iron overload. SYSTEM = GI/Hepatic SCORE = 1

Quantifying TRIO

- ▶ CT scanning has limited sensitivity (63%) for assessing hepatic iron overload (Guyader D. et. al., 1989).
- ▶ Liver iron content estimated by R2 MRI was found to be strongly correlated to that measured by liver biopsy (Badawy S. et al. , 2016).

(Badawy S. et al. , 2016)



Henninger et al., 2020

Before therapy

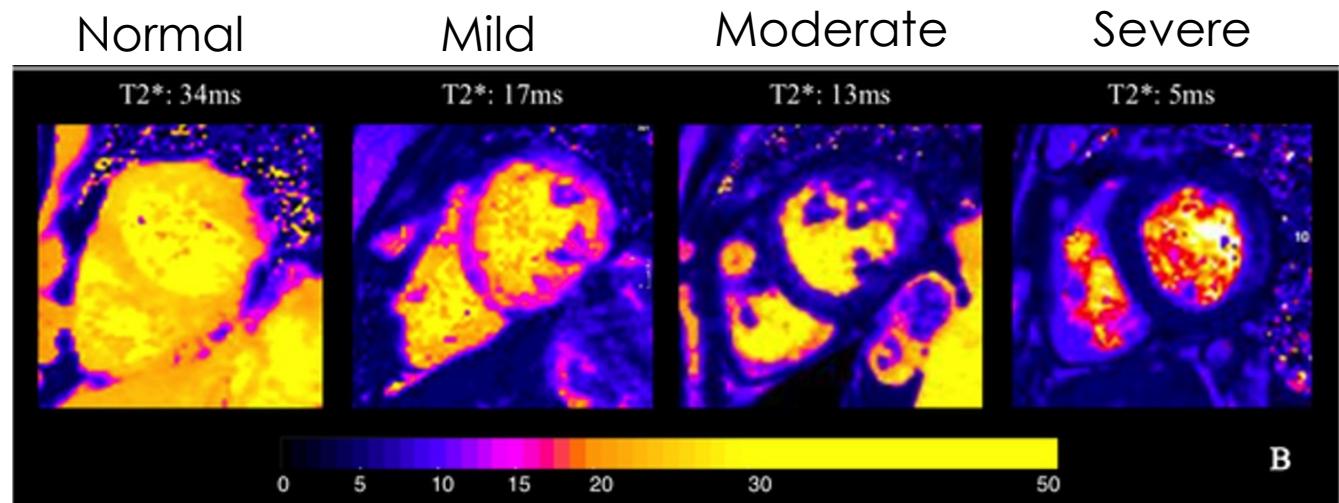

After therapy

Fig. 6

Quantifying TRIO

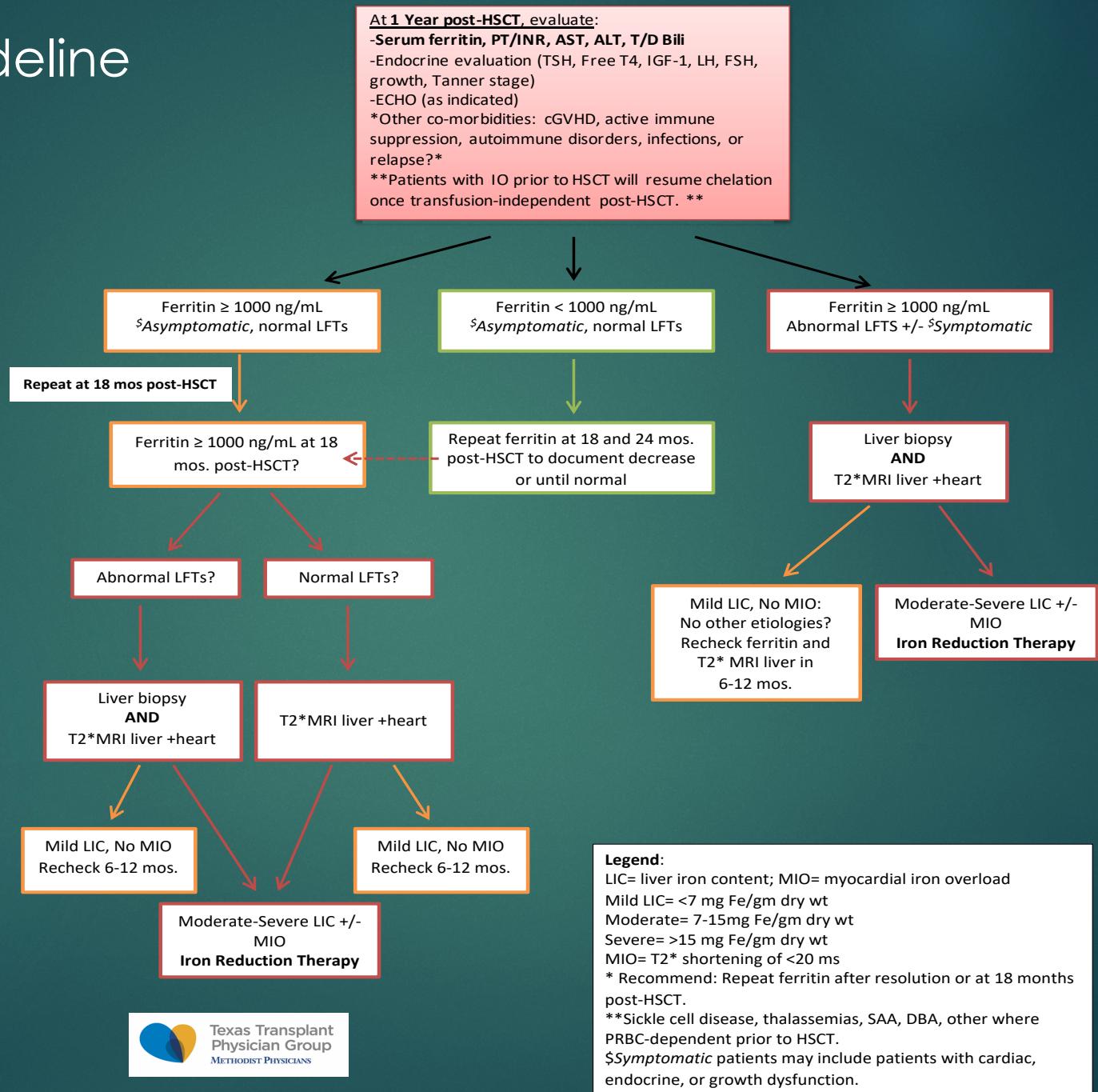
- ▶ T2 cardiac MRI can be used for initial diagnosis and treatment monitoring of myocardial iron overload (Aronow W. S. et al., 2018).
- ▶ Significantly shorter myocardial T2 time in patients with cardiac iron overload (Krittayaphong R et al 2019).

TRIO Risk factors

Major consideration:

- >10 pRBC transfusions or >1000mL pRBC (Trovillion EM et al., 2018, De Goyet MD et al., 2013, Ruccione, K.S., et al., 2012)
 - Sensitivity = 70%, specificity = 75%, AUC 76.6

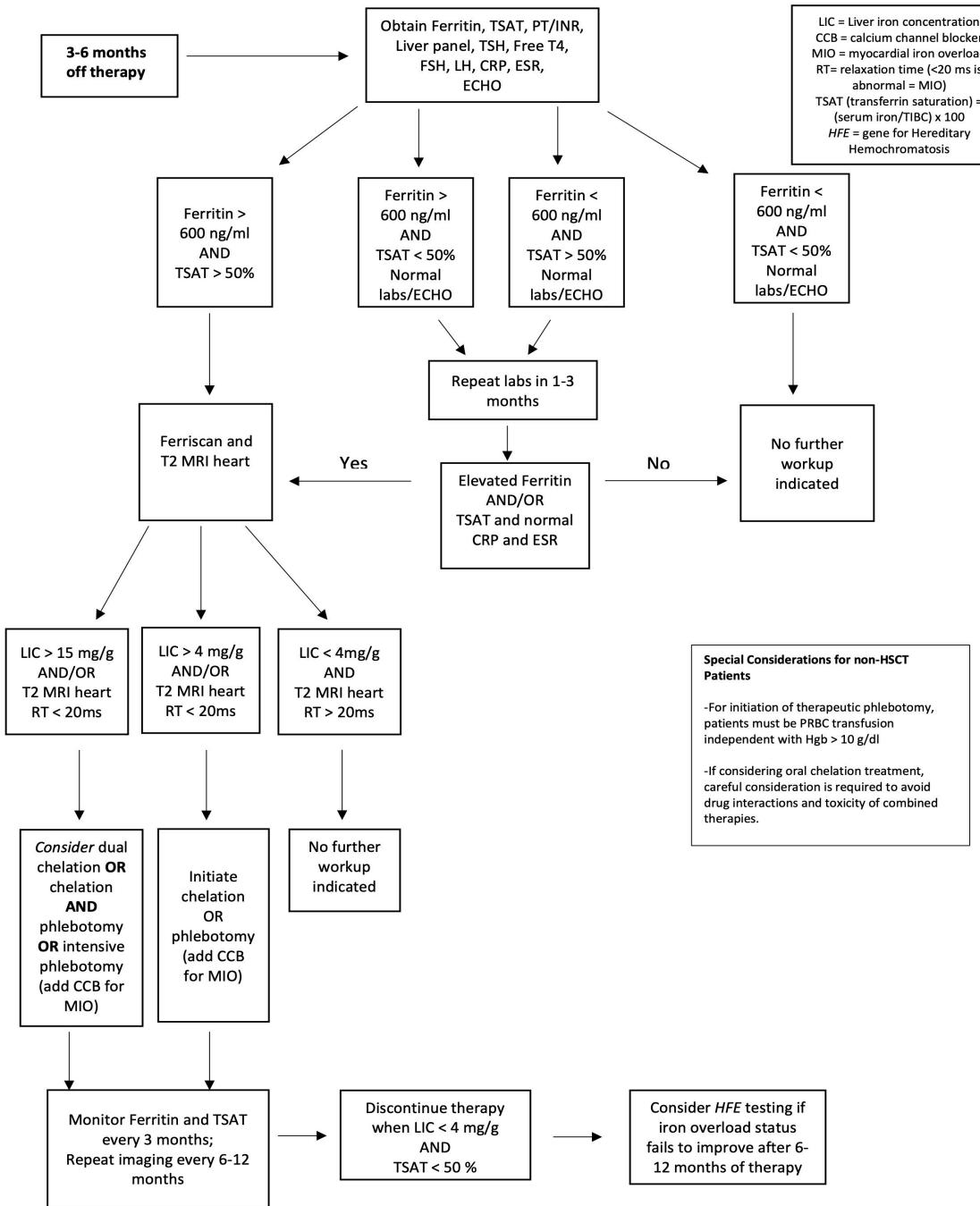
Minor considerations:


- Male
- Increased age (>14 years) (Trovillion et al., 2018)
- Significant GVHD (Sirvent et al., 2017)
- Allogeneic transplant from non-sibling (Sirvent et al., 2017)
- Elevated pre-transplant ferritin (Barba et al., 2013)

HSCT

Texas Transplant Physician Group Guideline

Screening Algorithm for Iron Overload (IO) after Allogeneic HSCT[©]



Clinical Pathway

Implemented
(6/1/23)

BMT** - 100
days post-
transplant

Appendix A. Guideline for Treatment-Related Iron Overload in non-Hematopoietic Stem Cell Transplant Patients

Inclusion Criteria

Cohort 1 (CAYA Cancer Survivors): Any patients treated by PHO providers who are > 3 months status post completion of oncology therapy AND not receiving ongoing PRBC transfusions.

Cohort 2 (HSCT): Any patients treated by Pediatric BMT providers who are >100 days post-HSCT AND not receiving ongoing PRBC transfusions.

Exclusion Criteria

1. Patients with prior history of TRIO or history of iron chelation treatment prior to starting chemotherapy or bone marrow transplant will be excluded from the post-implementation cohort only.
2. Patients who were treated with surgery or observation alone.
3. Patient >25 years of age.
4. Patients with no history of PRBC transfusions during oncology or HSCT treatment.

Variables to be collected

- ▶ Demographic information (Name, age, sex, weight, diagnosis, etc)
- ▶ Treatment methods (Surgery, chemo, radiation)
- ▶ Dosing/duration of therapy
- ▶ BMT variables (Transplant donor source/recipient, conditioning modality, transplant type, Number of transplants, etc)
- ▶ Outcomes and complications of therapy (BMT/Onc)
- ▶ Transfusional burden (Number pRBCs/cumulative volume)
- ▶ Chelation therapy and complications
- ▶ Clinical guideline components (CBC, Echo, Ferriscan, Hemochromatosis testing, etc)

Questions

- ▶ What associations can be drawn between age, diagnosis, treatment and the level/location of iron overload?
- ▶ Do certain diagnostic or prognostic factors place patients at greater risk of iron overload?
- ▶ How can screening guidelines be adjusted to account for differences in TRIO risk?

References

- ▶ Hayat, M. J., et al. (2007). "Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program." *Oncologist* **12**(1): 20-37.
- ▶ Hudson, M. M., et al. (2013). "Clinical ascertainment of health outcomes among adults treated for childhood cancer." *JAMA* **309**(22): 2371-2381.
- ▶ Nathan, P. C., et al. (2008). "Medical care in long-term survivors of childhood cancer: a report from the childhood cancer survivor study." *J Clin Oncol* **26**(27): 4401-4409.
- ▶ Trovillion, E. M., et al. (2018). "Iron Overload in Survivors of Childhood Cancer." *J Pediatr Hematol Oncol* **40**(5): 396-400.
- ▶ Halonen, P., et al. (2003). "Iron overload in children who are treated for acute lymphoblastic leukemia estimated by liver siderosis and serum iron parameters." *Pediatrics* **111**(1): 91-96.
- ▶ Olcay, L., et al. (2014). "Biochemical, radiologic, ultrastructural, and genetic evaluation of iron overload in acute leukemia and iron-chelation therapy." *J Pediatr Hematol Oncol* **36**(4): 281-292.
- ▶ Nair, M., et al. (2018). "Iron Overload in Children with Leukemia Receiving Multiple Blood Transfusions." *Indian Pediatrics* **55**(11): 962-965.
- ▶ Schempp, A., et al. (2016). "Iron Overload in Survivors of Childhood Cancer." *J Pediatr Hematol Oncol* **38**(1): 27-31.
- ▶ Majhail, N. S., et al. (2008). "High prevalence of iron overload in adult allogeneic hematopoietic cell transplant survivors." *Biol Blood Marrow Transplant* **14**(7): 790-794.
- ▶ Ruccione, K. S., et al. (2014). "Characterization of transfusion-derived iron deposition in childhood cancer survivors." *Cancer Epidemiol Biomarkers Prev* **23**(9): 1913-1919.
- ▶ Chotsampangcharoen, T., et al. (2009). "Iron overload in survivors of childhood leukemia after allogeneic hematopoietic stem cell transplantation." *Pediatr Transplant* **13**(3): 348-352.
- ▶ Guyader, D., et al. (1989). "Evaluation of computed tomography in the assessment of liver iron overload. A study of 46 cases of idiopathic hemochromatosis." *Gastroenterology* **97**(3): 737-743.
- ▶ Badawy, S. M., et al. (2016). "Assessing cardiac and liver iron overload in chronically transfused patients with sickle cell disease." *Br J Haematol* **175**(4): 705-713.
- ▶ Henninger, B., et al. (2020). "Practical guide to quantification of hepatic iron with MRI." *Eur Radiol* **30**(1): 383-393.
- ▶ Aronow, W. S. (2018). "Management of cardiac hemochromatosis." *Arch Med Sci* **14**(3): 560-568.
- ▶ Kittayaphong, R., et al. (2019). "Assessment of Cardiac Iron Overload in Thalassemia With MRI on 3.0-T: High-Field T1, T2, and T2* Quantitative Parametric Mapping in Comparison to T2* on 1.5-T." *JACC Cardiovasc Imaging* **12**(4): 752-754.
- ▶ de Ville de Goyet, M., et al. (2013). "Iron overload in children undergoing cancer treatments." *Pediatr Blood Cancer* **60**(12): 1982-1987.
- ▶ Sirvent, A., et al. (2017). "Prevalence and risk factors of iron overload after hematopoietic stem cell transplantation for childhood acute leukemia: a LEA study." *Bone Marrow Transplant* **52**(1): 80-87.
- ▶ Barba, P., et al. (2013). "Impact of hyperferritinemia on the outcome of reduced-intensity conditioning allogeneic hematopoietic cell transplantation for lymphoid malignancies." *Biol Blood Marrow Transplant* **19**(4): 597-601.
- ▶ Yulianti, S., et al. (2022). "Impact of restrictive versus liberal transfusion and clinical outcomes in critically ill children: A retrospective observational study." *Health Sci Rep* **5**(6): e898.
- ▶ Deschner, M., et al. (2022). "The impact of red blood cell transfusion on mortality and treatment efficacy in patients treated with radiation: A systematic review." *Clin Transl Radiat Oncol* **33**: 23-29.
- ▶ Steffen, K. M., et al. (2023). "The Impact of Restrictive Transfusion Practices on Hemodynamically Stable Critically Ill Children Without Heart Disease: A Secondary Analysis of the Age of Blood in Children in the PICU Trial." *Pediatr Crit Care Med* **24**(2): 84-92.
- ▶ Eisfeld, A. K., et al. (2012). "Kinetics of iron removal by phlebotomy in patients with iron overload after allogeneic hematopoietic cell transplantation." *Am J Blood Res* **2**(4): 243-253.
- ▶ Munikoty, V., et al. (2022). "Estimation of iron overload with T2*MRI in children treated for hematological malignancies." *Pediatr Hematol Oncol*: 1-11.
- ▶ Kwiatkowski, J. L., et al. (2022). "Deferiprone vs deferoxamine for transfusional iron overload in SCD and other anemias: a randomized, open-label noninferiority study." *Blood Adv* **6**(4): 1243-1254.
- ▶ Cappellini, M. D., et al. (2011). "Iron chelation with deferasirox in adult and pediatric patients with thalassemia major: efficacy and safety during 5 years' follow-up." *Blood* **118**(4): 884-893.
- ▶ Kolnagou, A., et al. (2018). "New targeted therapies and diagnostic methods for iron overload diseases." *Front Biosci (Schol Ed)* **10**(1): 1-20.
- ▶ DivakarJose, R. R., et al. (2021). "Efficacy and Safety of Combined Oral Chelation with Deferiprone and Deferasirox on Iron Overload in Transfusion Dependent Children with Thalassemia - A Prospective Observational Study." *Indian J Pediatr* **88**(4): 330-335.