KILL ALL MUTANTSI

(Intro to Mutation Testing)

by Dave Aronson
T.Rex-2025@Codosaur.us

=00
\ ~\...-,.:.. ,..':I

CODOSAURUS

-

(Blank slide so I can flip to a new one to start my timer, ignore this.)

CURRENT TIME: ~26:00, want <= 30 including Q&A, so OK

https://twitter.com/davearonson
http://Codosaur.us

LL ALL MUTANTS!

—_

(Intro to Mutation Testing)

by Dave Aronson
T.Rex-2025@Codosaur.us

=00

v\ <t

CODOSAURUS

Codosaur.us xS P @davearonson

Hi everybody, I’'m Dave Aronson, the T. Rex of Codosaurus, LLC. Some of you may already know me from NoVa-Python, DC Tech, and other local meetups.
I’m here tonight to teach you to KILL MUTANTS!

So, whaton . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: repeats of https://www.publicdomainpictures.net/en/view-image.php?image=86447 @davearonson

. . . Infinite Earths, makes . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/vectors/genetic-testing-gene-panel-genetics-2316642 @davearonson

. . . mutation testing different from all our other software testing techniques? The main difference is that most of the others are about . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/illustrations/tick-green-tick-correct-642162/ @davearonson

. . . checking whether our code is correct. But mutation testing . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://xkcd.com/1339/ @davearonson

.. . assumes that our code is correct, at least in the sense of passing its tests. Instead, mutation testing checks for two other qualities. In a typical
codebase, | think the more important one is that our test suite is . . .

https://twitter.com/davearonson
http://Codosaur.us

"use strict";

Codosaur.us @davearonson

... Strict. Now you might think, “Isn’t that what test coverage is for?”

https://twitter.com/davearonson
http://Codosaur.us

You keep using test coverage.

Y

- N

Be
I do not thmk it means

what you ‘think it means.. 8
Try} mutatlon testing. ¥ o }’

Codosaur.us Image: generated by me on imgflip.com, original movie still used under Fair Use clause @davearonson

No. The only thing that test coverage tells us is that at least one test ran . . .

https://twitter.com/davearonson
http://Codosaur.us

class Conway:
ALIVE = "*"
DEAD e

def another func:

Codosaur.us @davearonson

... the code it claims is “covered”. It tells us NOTHING about whether the correctness of the code made any difference to whether any test passed. So how
can we tell if the code really is tested, not just run? That's where mutation testing comes in.

To check that our test suite is strict, a mutation testing tool will try to . . .

https://twitter.com/davearonson
http://Codosaur.us

s /MIND)| Tk

B
NI NN g

- -

Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Mind_the_gap_2.JPG @davearonson

... find the gaps in our test suite, that let our code get away with unintended behavior. Once we find gaps, we can close them by either adding tests or
improving existing tests. Lack of stricthess comes mainly from /lack of tests, or poorly written tests.

The other thing mutation testing checks is that our code is . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pxhere.com/en/photo/825760 @davearonson

.. . meaningful, so that any semantic change to the code will produce a noticeable change in its behavior. Lack of meaning comes mainly from code being
unreachable, redundant, or otherwise just not having any real effect. When we find "meaningless" code, we can figure out why it's meaningless, then make it
meaningful, if that fits our intent, but the usual fix is just to remove it.

Mutation testing . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://www.flickr.com/photos/garryknight/2565937494 @davearonson

. . . puts these two together, by checking that every change to the code, that the tool knows how to do, does make a noticeable change to its behavior, and
that the test suite is indeed strict enough that at least one test will notice that change, and fail.

That's the positive side, but there are some drawbacks. The first one is thatit's . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://www.jtfb.southcom.mil/Media/Photos/igphoto/2000888525/ @davearonson

... hard labor for the CPU, so it’s usually ssslllooowww. We certainly won’t want to sit and wait while a tool mutation-tests our whole codebase, for any non-
trivial project. But, we can let it run in the background, or while we’re not even there, maybe over a lunch break for a smallish system, or a weekend for a
large one. Second, most tools let us just check specific methods, classes, files, and so on. Third, some include an . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://www.maxpixel.net/Progress-Graph-Growth-Achievement-Analyst-Diagram-3078543 @davearonson

.. . incremental mode, so that we can test only the changes since the last time we ran the tool, or the last git commit, or the changes from the main branch,
or some such milestone. With filtering like that, we can test just the relevant changes, over a much shorter time.

Another drawback is that it's often . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pxhere.com/en/photo/717939 @davearonson

... nhot at all clear what to do about the results! It tells us that some particular change to the code made no difference to the test results, but what does that
even mean? It takes a lot of interpretation to figure out what a surviving mutant is trying to tell us. They're usually saying that our code is meaningless, or
our tests are lax, or both, but it can be very hard to figure out exactly how! Even worse, sometimesit'sa. ..

https://twitter.com/davearonson
http://Codosaur.us

The Boy who
. Cried Wolf

| 3 1\
L)
S ‘* € e
-

A
B

-

Codosaur.us Image: https://www.flickr.com/photos/jared422/19116202568 @davearonson

.. . false alarm, because the mutation didn't make a test fail, but it didn't make any actual difference in the first place. It can still take quite a lot of time and
effort to figure that out.

And even if a mutation does make a difference, most programs have quite a lot of code that we just . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/fi/vectors/ty6-rekisterdidy-laiska-47200/ @davearonson

. . . Shouldn't bother to test, like debugging traces! Fortunately, many tools have ways to tell them "don't bother mutating this line", or even this whole
method, class, file, or whatever . . . but that's usually done with comments, which can clutter up the code, and make it less readable.

Now that we've seen some of the pros and cons, how does mutation testing work, unlike this guy? First, our chosen tool . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://commons.wikimedia.org/wiki/File:Disassembled-rubix-1.jpg @davearonson

.. . breaks our code apart into pieces to test. Usually, these are our methods. Then, for each method, it finds . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/fi/photos/testi-testaus-kupla-muoto-986935/ @davearonson

. . . the tests that cover the method, and . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image - com/polaris-xf issi @davearonson

. . . makes mutants from the method. To make mutants, the tool looks closely at the method to see how it can be changed, and for each tiny little way, the
tool makes . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/en/genetic-modification-mutant-mutation-549889/ @davearonson

. . . one copy with that change, in other words, one mutant with that mutation.

Once our tool is done creating all the mutants it can for a given method, it iterates over . . .

https://twitter.com/davearonson
http://Codosaur.us

T T

TRRNALE MUTANT NINLS

Codosaur.us Image: https://www.flickr.com/photos/39160147@N03/15074089655 @davearonson

... that list. And now we get to the heart of the concept.

https://twitter.com/davearonson
http://Codosaur.us

Mutating method whatever, at something.py:42

Test #
s Hlllﬂﬂlﬂﬂﬁ

In Progress

This chart represents the progress of our tool. The tools generally don't give us quite all this information, let alone so neatly organized, but | find this to be a
helpful conceptual model.

For each . ..

https://twitter.com/davearonson
http://Codosaur.us

_Mutating method whatever at something.py:42

In Progress
To Do
To Do

... mutant, derived from . . .

https://twitter.com/davearonson
http://Codosaur.us

Mutatiing method whatever, at something.py:42

721 4 10
Test# 1 | £ 51 6/7/819 Result

—IIIIEIIIII In Progress

O I A YT
-IIIIIIIIII
4 L] TeDo
s J L] Topo

. . . a given method, the tool runs the method's . . .

https://twitter.com/davearonson
http://Codosaur.us

Mutating methad ;shotasrax 2t comething.py:42

Test# 123|456 |7 |8|9 10!
Result

Mutant #

ot viviviv] [] | |inProgress

oz] Tebo

JENE X A A A O O Y-
4 L] Tebo
s J L] Topo

Codosaur.us @davearonson

... tests, but it runs them . ..

https://twitter.com/davearonson
http://Codosaur.us

Mutating method whatever, at something.py:42

... using the current mutant in place of the original method.

(PAUSE) If any test . ..

https://twitter.com/davearonson
http://Codosaur.us

Mutating method whatever, at something.py:42

Hll e lﬂﬂﬂ
H In Progress
llll

To Do

III
X I I I O I I A I Y-
4 L] TeDo
s J L] Topo

... fails, this is called . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/id/illustrations/tengkorak-dan-tulang-bersilang-mawar-693484/ @davearonson

... “killing the mutant”, and itsa . ..

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/vectors/turtle-tortoise-cartoon-animal-152079/ @davearonson

... good thing. It means that our code is meaningful enough that the change that the tool made, to create this mutant, made a difference in the method's
behavior, and that at least one test noticed that difference, and failed. Then, the tool will . . .

https://twitter.com/davearonson
http://Codosaur.us

Mutating method whatever, at something.py:42
Result

oz

X I I I O I I A I Y-
4 L] TeDo
s J L] Topo

.. . mark that mutant killed, . . .

https://twitter.com/davearonson
http://Codosaur.us

Mutating method whatever, at something.py:42

. . . stop running any more tests against it, and . . .

https://twitter.com/davearonson
http://Codosaur.us

Mutating method whatever, at something.py:42

Test #
Hlllﬂﬂlﬂﬂﬁ
IvIvIX -]

EIIIIIIIII In Progress

Codosaur.us @davearonson

. move on to the next one. Once a mutant has made one test fail, we don't care how many more it could make fail. Like so much in computers, we only
care about ones and zeroes.

On the other claw, if a mutant . . .

https://twitter.com/davearonson
http://Codosaur.us

Mutating method whatever, at something.py:42

Test #
Hlllﬂﬂlﬂﬂﬁ
IvIvIX -]

IIIIIIIIII In Progress

. .. lets all the tests pass, then the mutant is said to have . . .

https://twitter.com/davearonson
http://Codosaur.us

Mutating method whatever, at something.py:42

Test #
s Hlllﬂﬂlﬂﬂﬁ

... survived. That means that the mutant has the . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://nl.wikipedia.org/wiki/Bestand:Mimic_Octopus2.jpg @davearonson

.. . superpower of mimicry, skilled enough to fool our tests! This usually means that our code is meaningless, or our tests are lax, or both — and now it’s up
to us to figure out how.

Now let's peel back one . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/fi/photos/avaruusolento-marsin-vihrea-hirvio-722415/ @davearonson

... layer of the onion, and look at some technical details of how this works. First, our tool parses . . .

https://twitter.com/davearonson
http://Codosaur.us

class Conway:
ALIVE = "*"
DEAD =

@classmethod
def next_state(cls, cur_state, neighbors):
if cur state == cls.ALIVE:
result = cls.ALIVE if neighbors in [2,3] else cls.DEAD
else:
result = cls.ALIVE if neighbors == 3 else cls.DEAD
return result

def another func:
whatever

def some other func:
whatever

def yet another func:

whatever
Codosaur.us @davearonson

.. . our code, usually into an Abstract Syntax Tree. So, this code becomes . . .

https://twitter.com/davearonson
http://Codosaur.us

CONST DEAD

CONSTALIVE

Codosaur.us @davearonson

.. . this Abstract Syntax Tree. Theniit. ..

https://twitter.com/davearonson
http://Codosaur.us

\ \' '
-
“" . L e

Codosaur.us Image: https://www.needpix.com/photo/download/667144/cat-tree-climb-young-cat-pet-nature-cat-in-the-tree-domestic-cat-in-the-free @davearonson

.. . traverses the tree, looking for sub-trees, or branches if you will, that represent each method. After finding them, it looks for each one's tests. That
usually relies mainly on us developers, either . . .

https://twitter.com/davearonson
http://Codosaur.us

dmumu tests-for foo
def tesST ITOO turns 3 1nto 6:
foo(3) .must equal 6

def test foo turns 4 into 10:
foo(4) .must equal 10

Codosaur.us @davearonson

.. . annotating our tests, or following some kind of . . .

https://twitter.com/davearonson
http://Codosaur.us

def test{ foo rurns 3 1into 6:
foo(3) .must equal 6

def test{ foo rurns 4 into 10:
foo(4) .must equal 10

Codosaur.us @davearonson

. . . haming convention. These manual techniques are often supplemented and sometimes even replaced by . . .

https://twitter.com/davearonson
http://Codosaur.us

def test foo turns 3 1into 6:
foo)3) .must equal 6

def test foo turns 4 into 10:
fooj4) .must equal 10

Codosaur.us @davearonson

... the tool looking at what tests call what methods, out of our own codebase. Next it makes the mutants. To make mutants from an AST subtree, it . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pxhere.com/en/photo/1230969 @davearonson

.. . traverses that subtree, just like it did to the whole thing. But now, instead of looking for even smaller subtrees it can extract, like twigs or something, it's
looking for nodes where it can change something. Each time it finds one, then for each way it can change that node, it makes one copy of the method's AST
subtree, with that one node changed, in that one way.

Now, I've been talking a lot about changing things, so what kind of changes are we talking about? There are quite a lot!

https://twitter.com/davearonson
http://Codosaur.us

X +y

x || y could become:

x | v could become:

Maybe even swap between sets!

Codosaur.us @davearonson

It could change a mathematical, logical, or bitwise operator from one to another. When the language allows, it could even cross these categories.

However, in the interests of speed, many programs restrict, or let you restrict, how different an operator it will apply, so they can stick within the category, or
even try only the opposite, so x times y would only become x divided by vy.

https://twitter.com/davearonson
http://Codosaur.us

x - y could also become y - x

x / y could also become y / x

x ** y could also become y ** x

"x" + "y" could also become "y" + "x"

Codosaur.us @davearonson

When the order of operands matters, it could swap them.

https://twitter.com/davearonson
http://Codosaur.us

X <y

could become:

Codosaur.us @davearonson

It could change a comparison from one to another.

https://twitter.com/davearonson
http://Codosaur.us

X

could become:

-X
Ix
~X

. . . orvice-versal!

Codosaur.us @davearonson

It could insert or remove a mathematical, logical, or bitwise negation.

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us

It can remove an entire statement or expression.

a foo (x)
b bar (y)

could become:

a foo (x)

or

bar (y)

@davearonson

https://twitter.com/davearonson
http://Codosaur.us

if x == y:
foo(z)

could become:
foo(z)

Codosaur.us @davearonson

It can remove an if-condition . . .

https://twitter.com/davearonson
http://Codosaur.us

while x == y:
foo(z)

could become:

foo (z)

Codosaur.us @davearonson

. .. or a looping condition.

https://twitter.com/davearonson
http://Codosaur.us

def f(x, v):

lots of code here
could become:
def f(x,
def

return 0O
return sys.maxsize
return "a string"

return x # or vy
fail ("kaboom")
nothing

V)
)
)
) : return nil
)
)
)

Codosaur.us @davearonson

It could replace a method'’s entire contents with returning a constant, or any of the arguments, or raising an error, or nothing at all. In fact, removing the
method'’s entire content is the basis of a very fast form, called Extreme Mutation Testing, that only does that.

https://twitter.com/davearonson
http://Codosaur.us

"42" math.min int
[42] math.max int
42 {42} math.min float

could [] math.max float
become: () math.infinity
42 1 {} math.epsilon

41 9 None and many more

Codosaur.us @davearonson

It could change a value to some other value, such as changing 42 to any of these (though | realize Python doesn’t actually have those math constants), and

many more but | had to stop somewhere. It could even change it to something of a different and possibly incompatible type, such as changing a number into
a, if | may quote . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://www.flickr.com/photos/herval/50674160 @davearonson

... Gollum, “string, or nothing!”
There are many many more types of changes, but | trust you get the idea!

From here on, there are no more low-level details | want to add, so let’s finally walk through some examples! We'll start with an easy one. Suppose we have
a method . . .

https://twitter.com/davearonson
http://Codosaur.us

def power (x, vy):

X ** y

Codosaur.us @davearonson

... like so. Never mind why, it just makes a good simple example, so let’s just roll with it.
Think about what a mutant made from this might return, since that's what our tests would probably be looking at. It sure doesn’t look like it has side effects.

Mainly, such a mutant could return results such as . . .

https://twitter.com/davearonson
http://Codosaur.us

math.min int

math.max int

math.max float
math.min float
math.infinity
math.epsilon

raise (DeliberateError)
"some random string"

[]
0
{}

None
and many more

Codosaur.us @davearonson

X
X
X
X
y
X
y
0
1

=
o K
.
|_l

.. . any of these expressions or constants, and, again, many more but | had to stop somewhere.

Now suppose we had only one test . ..

https://twitter.com/davearonson
http://Codosaur.us

assert power (2, 2)

Codosaur.us @davearonson

... like so. This is a rather poor test, and | think at least one reason why is clear to most of us, but even so, most of those mutants on the previous slide
would get killed by this test, the ones shown . . .

https://twitter.com/davearonson
http://Codosaur.us

3

+F
9
H
None
eI e

Codosaur.us @davearonson

... here in crossed-out green. But. ..

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us @davearonson

. . . addition, multiplication, and exponentiation in the reverse order, all get us the correct answer. Mutants based on these mutations will therefore "surivive”
our test.

So how do we see that happening? When we run our tool, it gives us a report, that looks roughly like . . .

https://twitter.com/davearonson
http://Codosaur.us

method "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** v
43 + * y

43 **k y
43 + **x x

Codosaur.us @davearonson

... this. The format will vary greatly depending on exactly which tool we use, but semantically, the information should be the same. And that is that if we
changed . ..

https://twitter.com/davearonson
http://Codosaur.us

method "power" (0:=2mo.py:42)
havwlpsurzizandnly mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 *k oy
43 * y

43 **k y
43 **x x

Codosaur.us @davearonson

. . . the method called power, in . ..

https://twitter.com/davearonson
http://Codosaur.us

method "power" (demo.py:42)
has 4 surviving mabtants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** v
43 + * y

43 **k y
43 + **x x

Codosaur.us @davearonson

... file demo.py, atline 42 . . .

https://twitter.com/davearonson
http://Codosaur.us

methed™ power (GZmemnyv:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 *k oy
43 * y

43 **k y
43 **x x

Codosaur.us @davearonson

... in any of four ways, then all its tests still pass.

And, that those four ways are: . . .

https://twitter.com/davearonson
http://Codosaur.us

method "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y).
42 def power (y, x)_

43 ** y
43 + y

43 ** v
43 + * y

43 **k y
43 + **x x

Codosaur.us @davearonson

. . . to change the method declaration to swap the arguments, or . . .

https://twitter.com/davearonson
http://Codosaur.us

method "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** v
43 + * y

43 **k y
43 + **x x

Codosaur.us @davearonson

. . . change the method body to change the exponentiation into addition or multiplication, or . . .

https://twitter.com/davearonson
http://Codosaur.us

method "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** v
43 + * y

43 **k y
43 + **x x

Codosaur.us @davearonson

.. . to change the body to swap the exponentiation’s operands.

Sowhatis ...

https://twitter.com/davearonson
http://Codosaur.us

method "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 ** v
43 + * y

43 **k y
43 + **x x

Codosaur.us @davearonson

... this set of surviving mutants trying to tell us? We can tell from a glance at . . .

https://twitter.com/davearonson
http://Codosaur.us

def power (x, vy):

X ** y

Codosaur.us @davearonson

... our code, that it's probably not trying to tell us about redundant or unreachable code. The body is just one line, so that sort of problem is extremely
unlikely. So it's probably a test gap! The question now boils down to, how are . . .

https://twitter.com/davearonson
http://Codosaur.us

method "power" (demo.py:42)
has 4 surviving mutants:

42 def power (x, y):
42 def power (y, x):

43 ** y
43 + y

43 *k oy
43 * y

43 **k y
43 **x x

Codosaur.us @davearonson

.. . these mutants surviving? The usual answer is that . . .

https://twitter.com/davearonson
http://Codosaur.us

mutant power (x, y)

original power (x, y)

Codosaur.us @davearonson

... they return the same result as the original method. Or they have the same side effect — whatever our tests are looking at. To determine how that
happens, it helps to take a closer look at the mutant along with a test it passes. Let's start with . . .

https://twitter.com/davearonson
http://Codosaur.us

the change:

43 - X ** y
43 + X +y

our test:

assert power (2, 2) == 4

Codosaur.us

@davearonson

... the "plus" mutant. Looking at the change, together with our test, makes it clear that this one survives because . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: meme going around, original source unfindable, sorry @davearonson

.. . two plus two equals two fo the two. (And so does two times two, but he's in the background, we can save him for later.)

So how can we Kkill . . .

https://twitter.com/davearonson
http://Codosaur.us

the change:

43 - X **% y
43 + X +y

our test:

assert power (2, 2) == 4

Codosaur.us @davearonson

... this mutant, in other words, make at least one test fail when run against it, that would pass when run against the original code? To do that, we need to
make at least one test use inputs such that x plus y is different from x to the y. For instance, we could add a test or change our existing testto . . .

https://twitter.com/davearonson
http://Codosaur.us

assert power (2, 4)

Codosaur.us @davearonson

.. . assert that two to the fourth power is sixteen. All the mutants that our original test killed, this would still kill. But in addition, two plus four is six, not
sixteen, so this Kills the plus mutant. (See how that works?)

Better yet, two times four is eight, which is also not sixteen! We devs should certainly know our powers of two at least that welll So, this kills the "times"
mutant as well. Killing one mutant often kills many other mutants of the same method.

But . ..

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/vectors/teenage-mutant-ninja-turtles-turtle- 151715/ @davearonson

.. . the pair of argument-swapping mutants survive! That’s because . ..

https://twitter.com/davearonson
http://Codosaur.us

4 *x 2 16

2 **x 4 16

Codosaur.us @davearonson

... four squared is the same as two to the fourth, they’re both sixteen. But that’s not a big deal, we can . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://publicdomainvectors.org/en/free-clipart/Superhero-in-red-uniform/45131.html and prior @davearonson

. . . attack these mutants separately, no need to kill all the mutants in one shot and be some kind of superhero about it. To kill them, again, we can either add
a test, or adjust an existing test, to something like . . .

https://twitter.com/davearonson
http://Codosaur.us
https://publicdomainvectors.org/en/free-clipart/Superhero-in-red-uniform/45131.html

assert power (2, 3)

Codosaur.us @davearonson

... this, asserting that two to the third power is eight. Three squared is nine, not eight, so this kills the argument-swapping mutants. Better yet, two plus
three is five, two times three is six, and both of those are, guess what: not eight! So the "plus" and "times" mutants stay dead, and we don't get any . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://pixabay.com/vectors/zombie-undead-monster-living-dead-156138/ (modified by me) @davearonson

. . . zombie mutants wandering around, even if . . .

https://twitter.com/davearonson
http://Codosaur.us

assert power (2, 3)

Codosaur.us @davearonson

.. . this were still our one and only test. (PAUSE!) With these inputs, the correct operation is the only simple common one that yields the correct answer.
This isn't the only solution, though; even if we stuck to single digits, there are lots of ways to skin . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://www.flickr.com/photos/greyloch/48214242842 @davearonson

. . . that flerken!
This may make mutation testing sound simple, but this was a downright trivial example. So let’s look at a more complex one!

Suppose we have a method to send a message, . . .

https://twitter.com/davearonson
http://Codosaur.us

def send message (buf, len):
sent = 0
while sent < len:

sent += send bytes (buf, sent,
len - sent)

return sent

Codosaur.us @davearonson

... like so. This method, send_message, uses send_bytes to send as many bytes as send_bytes could send, like a woodchuck, looping to pick up where it
left off, until the message is all sent. This is a very common pattern in communication software.

A mutation testing tool could make lots of mutants from this, but one of particular interest, would be . . .

https://twitter.com/davearonson
http://Codosaur.us

def send message (buf, len):
sent =
—h e —sent < Jent

sent += send bytes (buf, sent,
len - sent)

return sent

Codosaur.us @davearonson

... this, an example of removing a looping control.

Now suppose that this mutant does indeed survive our test suite, which consists mainly of . . .

https://twitter.com/davearonson
http://Codosaur.us

assert send message (msg, size) == size

Codosaur.us @davearonson

... this. (PAUSE!) There's a bit more that I'm not going to show you quite yet, dealing with setting the size and actually creating the message. But even
without seeing that test code, what does the survival of that non-looping mutant tell us? (PAUSE!)

Hmmm . . . if a mutant that only goes through . . .

https://twitter.com/davearonson
http://Codosaur.us

def send message (buf, len):
sent = 0
while sent < len:

sent += send bytes (buf, sent,
len - sent)

return sent

Codosaur.us @davearonson

... that loop once, acts the same as our normal code, as far as our tests can tell, that means that our tests are only making our normal code go through that
loop once. So, what does that mean? (PAUSE!) By the way, you’ll find that interpreting mutants often involves a lot of asking yourself “so, what does that
mean"”, often deeply recursively!

In this case, it means that we're not testing sending a message larger than send_bytes can handle in one chunk! There are many ways that can happen, but
we’re only going to look at two possibilities. The most likely is that we should have, but simply forgot, or didn’t bother, to test with a big enough message.
For instance, . ..

https://twitter.com/davearonson
http://Codosaur.us

in network.py:

max chunk size = 10 000

in test_send_message:

msg = "foo"

size = length (msqg)

other setup, like stubbing send bytes
assert send message (msg, size) == size

Codosaur.us @davearonson

. . . Suppose our maximum chunk size, what send_bytes can handle in one chunk, is 10,000 bytes. But. ..

https://twitter.com/davearonson
http://Codosaur.us

in network.py:

max chunk size = 10 000

in testsend=massage:

msg = "foo"

size = length (msg)

Otherwsetupy Tike stubbing send bytes
assert send message (msg, size) == size

Codosaur.us @davearonson

.. . we’re only testing with an itty-bitty three byte message. (PAUSE!)

The obvious fix is to deliberately use a message larger than our maximum chunk size. With this kind of message, we can easily construct one, as shown . . .

https://twitter.com/davearonson
http://Codosaur.us

in network.py:

max chunk size = 10_900

in test.sema=Tiicssage:

size = network.max chunk size + 1

msg = "x" * size

OClrexw.setup, like stubbins=s€nd bytes
assert send message (msg, size) == size

Codosaur.us @davearonson

... here. (PAUSE!) We just take the maximum size, add some, and construct that big a message.

But now let’s look at another possible cause and solution. Maybe we did test with the largest permissible message, out of a set of predefined messages, or
at least message sizes. For instance, . ..

https://twitter.com/davearonson
http://Codosaur.us

in message.py:

SmallMsgSize 1 000
LargeMsgSize 5 000 # the largest

in test_send_message:

size = Message.LargeMsgSize

msg = Message.make msg("a" * size)

other setup, like stubbing send bytes
assert send message (msg, size) == size

Codosaur.us @davearonson

.. . here we have Small and Large message sizes, we test with a Large, and yet, this mutant survives! In other words, we're still sending the whole message
in one chunk. What could possibly be wrong with that? It sounds like a good thing to me! What is this mutant trying to tell us in this case? (PAUSE!)

In this scenario, it’s trying to tell us that a version of send_message with the looping removed will do the job just fine. If we remove the looping, we wind up
with . . .

https://twitter.com/davearonson
http://Codosaur.us

def send message (buf, 1len):
sent = 0

sent += send bytes (buf, sent,
len - sent)

return sent

Codosaur.us @davearonson

... this. Now some other stuff is clearly redundant, because we only needed it to support the looping. If we also remove that, then it boils down to . . .

https://twitter.com/davearonson
http://Codosaur.us

def send message (buf, 1len):

return send bytes (buf, 0, len)

Codosaur.us @davearonson

... this. (PAUSE!) Now the message is clear: the entire send_message method may well be redundant, so we can just use send_bytes directly! In real-
world code, though, it might not be, because there may be some . . .

https://twitter.com/davearonson
http://Codosaur.us

def send message (buf, len):
logging?

res = send bytes(buf, 0, len)
high-level error handling?
other record-keeping?

Codosaur.us @davearonson

.. . logging, error handling, and so on, needed in send_message, that we can’t (or at least shouldn’t) shove down the stack into send_bytes, but at the very
least, the looping was redundant. Fortunately, when it's this kind of problem, the usual solution is clear and easy, just rip out the extra junk that the mutant
doesn't have. This will also make our code more maintainable, by getting rid of useless cruft that just gets in the way of understanding it.

Now that we've seen a few different examples, of spotting both bad tests and redundant code, I'll address a couple . . .

https://twitter.com/davearonson
http://Codosaur.us

??

Codosaur.us @davearonson

... frequently asked questions. First, this all sounds pretty weird, deliberately making tests fail, to prove that the code succeeds! Where did this whole . . .

https://twitter.com/davearonson
http://Codosaur.us

Codosaur.us Image: https://commons.wikimedia.org/wiki/File:New_York_Comic_Con_2015_-_Bizarro_%2821931796858 %29.jpg @davearonson

... bizarro idea come from? Mutation testing has a surprisingly . . .

https://twitter.com/davearonson
http://Codosaur.us

@davearonson

Codosaur.us Image: https://www.flickr.com/photos/brickset/33236853148

.. . long history -- at least in the context of computers. It was first proposed in 1971, in Richard Lipton's term paper titled “Fault Diagnosis of Computer
Programs”, at Carnegie-Mellon University. The first tool appeared in 1980, as part of Timothy Budd's PhD work at Yale. However, it wasn’t practical
on typical developer-grade computers, until the early 2000s, with significant advances in CPU speed, multi-core CPUs, larger and cheaper memory,
and so on. Now, it's practical even on fairly low-end, but still relatively modern, systems, like this 2020 MacBook Air, at least with an M1 chip, not Intel.

Second, a more practical question: where should we fit this into . . .

https://twitter.com/davearonson
http://Codosaur.us

- Claim Ticket and Make Branch
- Write Tests

- Write Code

- Lint?

- Refactor?

- Create Pull Request

- Get PR Approved

- Merge PR and Delete Branch
- Go Back, Jack, Do It Again

Codosaur.us @davearonson

... our development process? Mainly, | think it belongs at least . . .

https://twitter.com/davearonson
http://Codosaur.us

- Claim Ticket and Make Branch
- Write Tests

- Write Code

- Lint?

- Refactor?

- Create Pull Request

- Get PR Approved

- Merge PR and Delete Branch
- Go Back, Jack, Do It Again

Codosaur.us @davearonson

.. . here, as part of the requirements for a Pull Request (or whatever your process uses) to be approved. You can set some standards for what you’re willing
to accept, such as no surviving mutants on new code and no increase of them on old code. Ideally this would be automated, as part of a Cl pipeline, started
automagically when the PR is created, stopping the job if the requirements aren’t met. That said, | personally would also do it in my own work as part of . . .

https://twitter.com/davearonson
http://Codosaur.us

- Claim Ticket and Make Branch
- Write Tests

- Write Code

- Lint?

- Refactor?

- Create Pull Request

- Get PR Approved

- Merge PR and Delete Branch
- Go Back, Jack, Do It Again

Codosaur.us @davearonson

... the Linting step, where | apply all sorts of quality checking tools, to make sure my code is as good as possible, before making anyone else bother with it.

If you'd like to try mutation testing for yourself . . .

https://twitter.com/davearonson
http://Codosaur.us

cosmic-ray
mutmut

mutpy
pester
xmutant

Codosaur.us @davearonson

... here is a list of tools for Python, just in alphabetical order, no endorsements meant with the ordering. It's been a while since I've done any mutation
testing in Python, so some of these may be outdated by now, and there may be new ones.

To summarize at last, mutation testing is a powerful technique to . . .

https://twitter.com/davearonson
http://Codosaur.us

@® Checks that code is meaningful

Codosaur.us @davearonson

.. . help ensure that our code is meaningful and . . .

https://twitter.com/davearonson
http://Codosaur.us

@ Checks that code is meaningful
® Checks that tests are strict

Codosaur.us @davearonson

.. .our tests are strict. It's . ..

https://twitter.com/davearonson
http://Codosaur.us

@ Checks that code is meaningful
@ Checks that tests are strict
@® Easy to get started with

Codosaur.us @davearonson

easy to get started with, in terms of setting up most of the tools and
annotating our tests if needed

(which may be tedious and time-consuming but at least it's easy),
butit's . . .

https://twitter.com/davearonson
http://Codosaur.us

@ Checks that code is meaningful
@ Checks that tests are strict
@ Easy to get started with

® Difficult to interpret results

... not so easy to interpret the results, noris it . . .

https://twitter.com/davearonson
http://Codosaur.us

@ Checks that code is meaningful
@ Checks that tests are strict
@ Easy to get started with

@ Difficult to interpret results
® Hard labor on the CPU

Codosaur.us @davearonson

... easy on the CPU.

Even if these drawbacks mean it might not be a good fit for our current projects, | still think it's just . . .

https://twitter.com/davearonson
http://Codosaur.us

@ Checks that code is meaningful
@ Checks that tests are strict

@ Easy to get started with

@ Difficult to interpret results

@ Hard labor on the CPU

@ Fascinating concept! &

...areally cool idea . . . in a geeky kind of way.

If you have any questions, . ..

https://twitter.com/davearonson
http://Codosaur.us

CODOSAURUS

QA <=5

T. Rex-ZOZSéCodosau r.us

linkedin.com/in/DaveAronson
bsky.app/profile/DaveAronson.bsky.social

Slides and FULL SCRIPT:
Codosaur.us/reds/mutants-pydist-25-slides

Codosaur.us @davearonson

... 'l take some now, and if you think of anything later, there’s my contact info, plus the URL for the slides, complete with a full script, which I've mostly
stuck to. Any questions?

https://twitter.com/davearonson
http://Codosaur.us

